Surface Properties of Natural Calcite Filler Treated with Stearic Acid
نویسندگان
چکیده
In order to obtain hydrophobic material, the water suspension of natural limestone with the high content of calcite (>95 %), was treated with different amounts (0.5-4 %) of stearic acid dissolved in chloroform. Thermal analysis showed that at lower initial concentrations of stearic acid (up to 2 %), surfactant molecules are chemisorbed on calcite surface, while at higher initial concentrations acid molecules are additionally physisorbed on mineral surface. XRPD analysis of starting calcite as well as two modified products with 1.5 and 3 % of stearic acid indicated that modification of calcite surface with both amounts of stearic acid, did not cause any changes in the structure of calcite mineral. It was confirmed that long chain stearic acid, in presence of water, alters the calcite surface to strongly hydrophobic, where reaction between stearic acid and Ca ions occurs. Thus, the chemisorption of stearic acid on the calcite surface is responsible for retaining the lower surfactant layer on a charged surface while hydrophobic bonding causes formation of the upper surfactant layer. The optimal amount of stearic acid needed to cover the calcite surface with a monolayer of organic molecules lies between 1.5 % and 2 %.
منابع مشابه
Cure Characteristics and Physico-mechanical Properties of the Stearic Acid Surface of Modified Calcium Carbonate Reinforcement NR/SBR Compounds
Calcium carbonate is a cheap and readily available filler used in rubber industry. This material is not compatible with rubber matrix, so many researchers have tried to modify its surface with various materials in order to increase its hydrophobicity and improve compatibility with the rubber matrix. In this effort, surface modification of calcium carbonate was carried out by 1.5%, 3% and 4% ste...
متن کاملDevelopment of Stearic Acid Coated Fly Ash Reinforced Recycled Polypropylene Matrix Composites and their Thermal Analysis
The industrial wastes fly ash (FA) and polypropylene (PP) were used to develop novel green composites using a renewable, cheap coupling agent i.e. stearic acid. The fly ash (FA) particles were coated with stearic acid (SA) in different weight % like 0, 1, 2, 3 and 5. The SA coated fly ash particles were incorporated as filler in recycled polypropylene (RPP) matrix which was obtained from post-c...
متن کاملGrowth and Dissolution of Calcite in the Presence of Adsorbed Stearic Acid.
The interaction of organic molecules with the surface of calcite plays a central role in many geochemical, petrochemical, and industrial processes and in biomineralization. Adsorbed organics, typically fatty acids, can interfere with the evolution of calcite when immersed in aqueous solutions. Here we use atomic force microscopy in liquid to explore in real-time the evolution of the (1014) surf...
متن کاملAssessment on the Effects of ZnO and Coated ZnO Particles on iPP and PLA Properties for Application in Food Packaging
This paper compares the properties of iPP based composites and PLA based biocomposites using 5% of ZnO particles or ZnO particles coated with stearic acid as filler. In particular, the effect of coating on the UV stability, thermostability, mechanical, barrier, and antibacterial properties of the polymer matrix were compared and related to the dispersion and distribution of the loads in the pol...
متن کاملEffect of Glycerol and Stearic Acid as Plasticizer on Physical Properties of Benzylated Wheat Straw
The wheat straw as abundant lignocellulosic resource was successfully undergone in a benzylation reaction and plasticized with different contents (2.5, 3, 5 and 7 wt. %) of glycerol and stearic acid.The effect of type and concentration of plasticizers on the mechanical, thermomechanical, morphological and water absorption properties of Benzylated Wheat Straw (BWS) was investigated ...
متن کامل